Torus Graphs and Simplicial Posets

نویسندگان

  • HIROSHI MAEDA
  • MIKIYA MASUDA
چکیده

For several important classes of manifolds acted on by the torus, the information about the action can be encoded combinatorially by a regular n-valent graph with vector labels on its edges, which we refer to as the torus graph. By analogy with the GKM-graphs, we introduce the notion of equivariant cohomology of a torus graph, and show that it is isomorphic to the face ring of the associated simplicial poset. This extends a series of previous results on the equivariant cohomology of torus manifolds. As a primary combinatorial application, we show that a simplicial poset is Cohen–Macaulay if its face ring is Cohen–Macaulay. This completes the algebraic characterisation of Cohen–Macaulay posets initiated by Stanley. We also study blow-ups of torus graphs and manifolds from both the algebraic and the topological points of view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posets, clique graphs and their homotopy type

To any finite poset P we associate two graphs which we denote by Ω(P ) and 0(P ). Several standard constructions can be seen as Ω(P ) or 0(P ) for suitable posets P , including the comparability graph of a poset, the clique graph of a graph and the 1–skeleton of a simplicial complex. We interpret graphs and posets as simplicial complexes using complete subgraphs and chains as simplices. Then we...

متن کامل

[hal-00740434, v1] Simplicial simple-homotopy of flag complexes in terms of graphs

A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs hav...

متن کامل

f-vectors and h-vectors of simplicial posets

Stanely, R.P., f-vectors and h-vectors of simplicial posets, Journal of Pure and Applied Algebra 71 (1991) 319-331. A simplicial poset is a (finite) poset P with d such that every interval [6, x] is a boolean algebra. Simplicial posets are generalizations of simplicial complexes. The f-vector f(P) = (f,, f,, , ,f_,) of a simplicial poset P of rank d is defined by f; = #{x E P: [6, x] g B,, I}, ...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

Topology of Hom complexes and test graphs for bounding chromatic number

The Hom complex of homomorphisms between two graphs was originally introduced to provide topological lower bounds on the chromatic number of graphs. In this paper we introduce new methods for understanding the topology of Hom complexes, mostly in the context of Γ-actions on graphs and posets (for some group Γ). We view the Hom(T, •) and Hom(•, G) as functors from graphs to posets, and introduce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005